Part Number Hot Search : 
32303 7470N TA1634A ISR1020C LT5525 C9S12 MA3F749 CA14367
Product Description
Full Text Search
 

To Download RP104N33C-TR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  150ma ultra low supply current ldo regulator rp104 series no.ea-150-070712 1 outline the rp104 series are cmos-based voltage regulator ics with high output voltage accuracy, extremely low supply current and low on-resistance. each of these ics consists of a voltage reference unit, an error amplifier, resistor-net for voltage setting, a current limit circuit and a chip enable circuit. these ics perform with ultra low supply current (typ.1.0a), which prolong the battery life. since the packages for these ics are plp1010-4, sot-23-5 and sc-82ab, therefore high density mounting of the ics on boards is possible. features low supply current ..................................................................... typ. 1.0a (except the current through ce pull down circuit) standby mode..............................................................................typ. 0.1a low dropout voltage ...................................................................typ. 0.28v(i out =150ma 2.5v output type) low temperature-drift coefficient of output voltage .................. typ. 40ppm/ c good line regulation ..................................................................typ. 0.02%/v high output voltage accuracy..................................................... 0.8% small packages ...........................................................................plp1010-4, sot-23-5, sc-82ab output voltage .............................................................................1.2v, 1.3v, 1.5v, 1.8v, 1.85v, 1.9v, 2.0v, 2.5v, 2.6v, 2.7v, 2.8v, 2.85v, 2.9v, 3.0v, 3.2v, 3.3v built-in fold back protection circuit ............................................typ. 40ma (current at short mode) ceramic capacitors are recommended to be used with this ic ............. c in =c out =0.1f or more applications ?? power source for portable communication equipment. ?? power source for electrical appliances such as cameras, vcrs and camcorders. ?? power source for battery-powered equipment.
rp104 2 block diagrams rp104xxx1b rp104xxx1c rp104xxx1d v ref current limit gnd v dd v dd v ref current limit gnd v ref current limit gnd v dd v out ce ce v out v out ce - + - + - +
rp104 3 selection guide the output voltage, version, and the taping type for the ics can be selected at the user?s request. the selection can be made with designating the part number as shown below; rp104xxx 1x-xx part number a b c d code contents a designation of package type: k: plp1010-4 n: sot-23-5 q: sc82-ab b setting output voltage (v out ): 1.2v, 1.3v, 1.5v, 1.8v, 1.85v, 1.9v, 2.0v, 2.5v, 2.6v, 2.7v, 2.8v, 2.85v, 2.9v, 3.0v, 3.2v, 3.3v exception: 1.85v=rp104x181x5, 2.85v=rp104x281x5 c designation of active type: b: active high type* c: without chip enable circuit d: active high, with auto discharge* d designation of taping type: ex. tr (refer to taping specifications; tr type is the standard direction.) *when the mode is into standby with ce signal, auto-discharge transistor turns on, and it makes the turn-off speed faster than normal type. pin configuration plp1010-4 bottom view 1 2 3 4 v out gnd ce/nc v dd top v iew 1 2 3 4 v out gnd ce/nc v dd
rp104 4 sot-23-5 sc-82ab ? pin descriptions ? rp104k pin no. symbol description 1 v out output pin 2 gnd ground pin 3 ce or nc chip enable pin (?h? active) or no connection 4 v dd input pin tab is gnd level. (they are connected to the reverse side of this ic.) do not connect to other wires or land patterns. v dd ce/nc v out gnd nc 1 5 3 2 4 mark side mark side 1 2 4 3 ce/nc gnd v dd v out
rp104 5 ? rp104n pin no. symbol description 1 v dd input pin 2 gnd ground pin 3 ce or nc chip enable pin (?h? active) or no connection 4 nc no connection 5 v out output pin ? rp104q pin no. symbol description 1 ce or nc chip enable pin (?h? active) or no connection 2 gnd ground pin 3 v out output pin 4 v dd input pin ? absolute maximum ratings symbol item rating unit v in input voltage 6.0 v v ce input voltage (ce pin) 6.0 v v out output voltage - 0.3 ~ v in + 0.3 v i out output current 200 ma sot-23-5 420 plp1010-4 400 p d power dissipation * sc-82ab 380 mw ta ambience temperature range - 40 ~ + 85 c tstg storage temperature range - 55 ~ + 125 c *for power dissipation, please refer to package information section
rp104 6 electrical characteristics rp104xxx v in = set v out + 1v for v out options greater than 1.5v. v in =2.5v for v out < = 1.5v, i out =1ma, c in =c out =0.1f, unless otherwise noted. bold values indicate ? 40 c < = ta < = 85 c, unless otherwise noted. ta=25 c symbol item conditions min. typ. max. unit v out 0.992 (-16mv) v out 1.008 (16mv) v out output voltage (*1) v out 0.985 (-30mv) v out 1.015 (30mv) v i out output current 150 ma ? v out / ? i out load regulation 1ma < = i out < = 150ma 10 20 mv v dif dropout voltage please see the data on next page(p.8) i ss supply current i out = 0ma 1.0 1.5 a istandby supply current (standby) v ce = 0v 0.1 1.0 a ? v out / ? v in line regulation set v out +0.5v < = v in < = 5.0v 0.02 0.10 %/v v in input voltage (*2) 1.70 5.25 v ? v out / ? t output voltage temperature coefficient ? 40 c < = ta < = 85 c 40 ppm / c i lim short current limit v out = 0v 40 ma i pd ce pull-down current (d/b version only) 0.3 a v ceh ce input voltage ?h? (d/b version only) 1.5 v v cel ce input voltage ?l? (d/b version only) 0.3 v r low nch on resistance for auto discharge (d version only) v in =4.0v, v ce =0v 30 ? dropout voltage the specification in bold is checked and guaranteed by design engineering. dropout voltage (v) v out (v) condition typ. max. 1.2v < = v out < 1.5v 0.76 1.05 1.5v < = v out < 1.7v 0.53 0.80 1.7v < = v out < 2.0v 0.44 0.65 2.0v < = v out < 2.5v 0.34 0.50 2.5v < = v out < 2.8v 0.28 0.40 2.8v < = v out < = 3.3v i out =150ma 0.24 0.32
rp104 7 all of units are tested and specified under pulse load conditions such that tj ta =25 c except for output noise and output voltage temperature coefficient items. (*1) v out < = 2.0v 16mv accuracy( - 40 c < = ta < = 85 c 30mv accuracy) (*2) if input voltage range is between 5.25v and 5.5v, the total operational time must be within 500hrs. technical notes when using these ics, consider the following points: phase compensation in these ics, phase compensation is made for securing stable operation even if the load current is varied. for this purpose, use a capacitor c out with good frequency characteristics and esr (equivalent series resistance). (note: if additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. because of this, test these ics with as same external components as ones to be used on the pcb.) pcb layout make v dd and gnd lines sufficient. if their impedance is high, noise pickup or unstable operation may result. connect a capacitor with a capacitance value as much as 0.1f or more between v dd and gnd pin, and as close as possible to the pins. set external components, especially the output capacitor, as close as possible to the ics, and make wiring as short as possible. (external components) output capacitor 0.1f murata : grm155b31c104ka87b c1 c2 vdd out ce gnd in out rp104 rp104 rp104 rp104 series series series series
rp104 8 typical characteristics 1. output voltage vs output current (topt=25 c) rp104x121 x 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 100 200 300 400 500 output current iout(ma) output voltage vout(v) vin=1.7v vin=2.0v vin=2.3v vin=2.6v cin=ceramic 0.1 f ? cout=ceramic 0.1 f rp 104x 251x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 100 200 300 400 500 output current iout(ma) output voltage vout(v) vin=2.8v vin=3.1v vin=3.4v vin=3.7v cin=ceramic 0.1 f ? cout=ceramic 0.1 f rp104x331x 0.0 0.7 1.4 2.1 2.8 3.5 4.2 0 100 200 300 400 500 output current iout (ma) output voltage vout(v) vin=3.6v vin=3.9v vin=4.2v vin=4.5v cin=ceramic 0.1 f ? cout=ceramic 0.1 f
rp104 9 2. output voltage vs. input voltage rp104x121x rp104x251x rp 104x 331x cin=ceramic 0.1 f ? cout=ceramic 0.1 f ci n =ceram ic 0. 1 f ? cout=ceramic 0.1 f 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0123 45 input voltage vin(v ) output voltage vout(v) iout =1ma iout =30ma iout =50ma 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1234 5 input voltage vin(v) output voltage vout(v) iou t= 1ma iout=30ma iout=50ma cin=ceramic 0.1 f ? cout=ceramic 0.1 f 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 012345 input vol tage vin(v) output voltage vout(v) iout=1ma iout=30ma iout=50ma
rp104 10 3. supply current vs. input voltage (topt=25 c) rp104x121x rp104x251x rp 104x 331x cin=ceramic 0.1 f ? cout=ceramic 0.1 f ci n =ceram ic 0. 1 f ? cout=ceramic 0.1 f cin=ceramic 0.1 f ? cout=ceramic 0.1 f 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0123 45 input voltage vin(v) supply current iss(ua) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 01234 5 input v oltage vin(v) supply current iss(ua) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0123 45 input voltage vin(v) supply current iss(ua)
rp104 11 4. output voltage vs. temperature rp104x121x rp104x251x rp 104x 331x vin=2.2v cin=ceramic 0.1 f ? cout=ceramic 0.1 f vin=3.5v ci n =ceram ic 0. 1 f ? cout=ceramic 0.1 f vin=4.3v cin=ceramic 0.1 f ? cout=ceramic 0.1 f 1.17 1.18 1.19 1.2 1.21 1.22 1.23 -50 -25 0 25 50 75 100 temperature topt( ) output voltage vout(v) 2.47 2.48 2.49 2.5 2.51 2.52 2.53 -50 -25 0 25 50 75 100 temperature topt( ) output vol tage vout(v) 3.27 3.28 3.29 3.3 3.31 3.32 3.33 -50 -25 0 25 50 75 100 temperature topt( ) output voltage vout(v)
rp104 12 5. supply current vs. temperature rp104x121x rp104x251x rp 104x 331x vin=2.2v cin=ceramic 0.1 f ? cout=ceramic 0.1 f vin=3.5v ci n =ceram ic 0. 1 f ? cout=ceramic 0.1 f vin=4.3v cin=ceramic 0.1 f ? cout=ceramic 0.1 f 0.2 0.4 0.6 0.8 1 1.2 1.4 -50 -25 0 25 50 75 100 temperature topt( ) supply current iss (ua) 0.2 0.4 0.6 0.8 1 1.2 1.4 -50 -25 0 25 50 75 100 temperature topt( ) supply current iss(ua) 0.2 0.4 0.6 0.8 1 1.2 1.4 -50 -25 0 25 50 75 100 temperature topt( ) supply current iss (ua)
rp104 13 6. dropout voltage vs. output current (topt=25 c) rp 104x 331x cin=ceramic 0.1 f ? cout=ceramic 0.1 f 0 50 100 150 200 250 300 0 25 50 75 100 125 150 output current iout(ma) dropout voltage vdif(mv ) 85 25 -40 rp104x121x rp104x251x cin=ceramic 0.1 f ? cout=ceramic 0.1 f cin =ceramic 0. 1 f ? cout=ceramic 0.1 f 0 100 200 300 400 500 600 700 800 900 0 25 50 75 100 125 150 output current iout(ma) dropout voltage vdif(mv) 85 25 -40 0 50 100 150 200 250 300 350 400 0 25 50 75 100 125 150 output current iout(ma) dropout voltage vdif(mv) 85 25 -40
rp104 14 7. dropout voltage vs. set output voltage(topt=25 c) cin=ceramic 0.1 f ? cout=ceramic 0.1 f 0 100 200 300 400 500 600 700 800 11.522.533.5 set output voltage vreg(v) dropout voltage vdif(mv) iout =1m a iout=30ma iout=50ma iout=150ma
rp104 15 8) ripple rejection vs. input bias voltage(topt=25 c) rp104x121x rp104x251x rp 104x 331x 0.2v p-p iout=1m a cin=none ? cout=ceramic 0.1 f 0.2vp-p iout=1m a ci n=none ? cout=ceramic 0.1 f 0.2v p-p iout=1m a cin=none ? cout=ceramic 0.1 f 0 5 10 15 20 25 30 35 40 1.3 1.6 1.9 2.2 input voltage vin(v) ripple rejection rr(db) f=600hz f=1khz f=10khz f=100khz 0 5 10 15 20 25 30 35 40 2.6 2.9 3.2 3.5 input voltage vin(v) ripple rejection rr(db) f=600hz f=1khz f=10khz f=100khz 0 5 10 15 20 25 30 35 40 3.4 3.7 4 4.3 input voltage vin(v) ripple rejection rr(db) f=600hz f=1khz f=10khz f=100khz
rp104 16 rp104x331x rp104x121x rp104x251x 0.2v p-p iout=30ma cin=none ? cout=ceramic 0.1 f 0.2vp-p iout=30m a cin=none ? cout=ceramic 0.1 f 0.2v p-p iout=30ma cin=none ? cout=ceramic 0.1 f 0 5 10 15 20 25 30 35 40 3.43.744.3 input voltage vin(v) ripple rejection rr(db) f=600hz f=1k hz f=10khz f=100khz 0 5 10 15 20 25 30 35 40 2.6 2.9 3.2 3.5 input voltage vin(v) ripple rejection rr(db) f=600 hz f=1kh z f=10k h z f=100 kh z 0 5 10 15 20 25 30 35 40 1.3 1.6 1.9 2.2 input voltage vin(v) ripple rejection rr(db) f=600hz f=1khz f=10khz f=100khz
rp104 17 rp 104x 331x rp104x121x rp104x251 x 0.5v p-p iout=1m a cin=none ? cout=ceramic 0.1 f 0.5vp-p iout=1m a ci n=none ? cout=ceramic 0.1 f 0.5v p-p iout=1m a cin=none ? cout=ceramic 0.1 f 0 5 10 15 20 25 30 35 40 1.3 1.6 1.9 2.2 input voltage vin(v) ripple rejection rr(db) f=600hz f=1khz f=10khz f=100khz 0 5 10 15 20 25 30 35 40 2.6 2.9 3.2 3.5 input voltage vin(v) ripple rejection rr(db) f=600hz f=1khz f=10khz f=100khz 0 5 10 15 20 25 30 35 40 3.4 3.7 4 4.3 input voltage vin(v) ripple rejection rr(db) f=600hz f=1khz f=10khz f=100khz
rp104 18 rp 104x 331x rp104x121x rp104x251 x 0.5v p-p iout=30m a cin=none ? cout=ceramic 0.1 f 0.5vp-p iout=30m a ci n=none ? cout=ceramic 0.1 f 0.5v p-p iout=30m a cin=none ? cout=ceramic 0.1 f 0 5 10 15 20 25 30 35 40 3.4 3.7 4 4.3 input voltage vin(v) ripple rejection rr(db) f=600hz f=1k h z f=10khz f=100khz 0 5 10 15 20 25 30 35 40 2.6 2.9 3.2 3.5 input voltage vin(v) ripple rejection rr(db) f=600 hz f=1kh z f=10k h z f=100 kh z 0 5 10 15 20 25 30 35 40 1.3 1.6 1.9 2.2 input voltage vin(v) ripple rejection rr(db) f=600hz f=1khz f=10khz f=100khz
rp104 19 9) ripple rejection vs. frequency (topt=25 c) rp104x121x rp104x251 x rp 104x 331x vin=2.2vdc+0.2vp-p cin=none ? cout=ceramic 0.1 f vin=3.5vdc+0.2vp-p ci n=none ? cout=ceramic 0.1 f vin=4.3vdc+0.2vp-p cin=none ? cout=ceramic 0.1 f 80 70 60 50 40 30 20 10 0 0.1 1 10 100 frequency (khz) ripple reiection rr(db) iout=1ma iout=30ma iout=150ma 80 70 60 50 40 30 20 10 0 0.1 1 10 100 frequency (khz) ripple reiection rr(db) iout=1ma iout=30ma iout=150ma 80 70 60 50 40 30 20 10 0 0.1 1 10 100 frequency (khz) ripple reiection rr(db) iout=1ma iout=30ma iout=150ma
rp104 20 rp 104x 331x rp104x121x rp104x251x vin=2.2vdc+0.5vp-p cin=none ? cout=ceramic 0.1 f vin=3.5vdc+0.5vp-p cin=none ? cout=ceramic 0.1 f vin=4.3vdc+0.5vp-p cin=none ? cout=ceramic 0.1 f 80 70 60 50 40 30 20 10 0 0.1 1 10 100 frequency (khz) ripple reiection rr(db) iout=1ma iout=30ma iout=150ma 80 70 60 50 40 30 20 10 0 0.1 1 10 100 frequency (khz) ripple reiection rr(db) iout=1ma iout=30ma iout=150ma 80 70 60 50 40 30 20 10 0 0.1 1 10 100 frequency (khz) ripple reiection rr(db) iout=1ma iout=30ma iout=150ma
rp104 21 10) turn on speed with ce pin (topt=25 c) rp104x121x rp104x251x rp 104x 331x 0.0 1.1 2.2 3.3 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 time t(ms) ce input voltage vce(v) 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 output voltage vout(v) vce iout= 0ma iout= 30ma iout= 150ma vin=2.2v cin=ceramic 0.1 f ? cout=ceramic 0.1 f vin=3.5v cin=ceramic 0.1 f ? cout=ceramic 0.1 f 0.0 2.2 4.3 6.5 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 time t(ms) ce input v oltage vce(v) 0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 output voltage vout(v) vce iou t=0m a iout=30ma iout=150ma vin=4.3v ci n=c eram ic 0.1 f ? cout=ceramic 0.1 f 0.0 1.8 3.5 5.3 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 time t(ms) ce input voltage vce(v) 0.0 1.3 2.5 3.8 5.0 6.3 7.5 8.8 output voltage vout(v) vce iout=0ma iout=30ma iout=150ma
rp104 22 11) turn off speed with ce pin (topt=25 c) rp104x121d rp104x331d 0.0 1.1 2.2 3.3 -0.1 0 0.1 0.2 0.3 0.4 0.5 time t(ms) ce input v oltage vce(v) 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 output voltage vout(v) vce iou t =0ma iout=30ma iout=150ma vin=2.2v cin=ceramic 0.1 f ? cout=ceramic 0.1 f 0.0 2.2 4.3 6.5 -0.1 0 0.1 0.2 0.3 0.4 0.5 time t(ms) ce input voltage v ce(v) 0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 output voltage vout(v ) vce iout=0ma iout=30ma iout=150ma vin=4.3v cin=ceramic 0.1 f ? cout=ceramic 0.1 f
rp104 23 12. turn on speed of c.version (topt=25 c) rp104x121c rp104x251c rp104x331c vin=5.0v cin=ceramic 0.1 f ? cout=ceramic 0.1 f vin=5.0v cin=ceramic 0.1 f ? cout=ceramic 0.1 f 0.0 2.5 5.0 7.5 -40 0 40 80 1 20 160 200 240 280 320 360 time( s) input voltage(v) 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 output v oltage(v) vin iout=0ma iout=-150ma 0.0 2.5 5.0 7.5 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 tima(ms) input voltage(v) 0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 output voltage(v) vin iout=0ma iout=-150ma vin=5.0 v cin=ceramic 0.1 f ? cout=ceramic 0.1 f 0.0 2.5 5.0 7.5 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 tim e(ms ) input voltage(v) 0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 oput voltage(v) vin iout=0ma iout=-150ma
rp104 24 13) load transient response (topt=25 c) rp 104x 331x rp104x121x rp104x251x vin=2.2v cin=ceramic 0.1 f ? cout=ceramic 0.1 f 0.6 0.9 1.2 1.5 1.8 2.1 2.4 -40 0 40 80 120 160 200 240 280 320 360 tim e t( s) output voltage vout(v) -150 -100 -50 0 50 100 150 o utput current iout(m a) output current iout=50ma ? 100ma output voltage vin=3.5v cin=ceramic 0.1 f ? cout=ceramic 0.1 f vin=4.3v cin=ceramic 0.1 f ? cout=ceramic 0.1 f 1.9 2.2 2.5 2.8 3.1 3.4 3.7 -40 0 40 80 120 160 200 240 280 320 360 time t( s) output voltage vout(v) 0 50 100 150 out put current iout(m a) output current iout=50ma ? 100ma output voltage 2.7 3 3.3 3.6 3.9 4.2 4.5 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 time t( s) output voltage vout(v) 0 50 100 150 o utput current iout(ma) output current io ut=50ma ? 100ma output voltage
rp104 25 rp 104x 331x rp104x121x rp104x251x vin=2.2v cin = ceramic 0 1 f ? f vin=3.5v cin=ceramic 0.1 f ? cout=ceramic 0.1 f vin=4.3v cin = ceramic 0 1 f ? f vin=4.3v cin=ceramic 0.1 f ? cout=ceramic 0.1 f 2.9 3.1 3.3 3.5 3.7 3.9 4.1 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 time t( ms) outpu t vo lt age vout(v ) -35 -26 -17 -8 1 10 19 output current iout(ma) output current iout=1ma ? 10ma output voltage 2.1 2.3 2.5 2.7 2.9 3.1 3.3 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ti me t( ms ) output vo lta ge vout(v) -35 -26 -17 -8 1 10 19 output current iout(ma) output current iout=1ma ? 10ma output v oltage vin=2.2v cin = ceramic 0 1 f ? f vin=2.2v cin=ceramic 0.1 f ? cout=ceramic 0.1 f 0.8 1 1.2 1.4 1.6 1.8 2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 time t( ms) output voltage vout(v) -35 -26 -17 -8 1 10 19 output curre nt iout( ma) output current iout=1ma ? 10ma output voltage
rp104 26 rp 104x 331x rp104x121x rp104x251x vin=2.2v cin=ceramic 0.1 f ? cout=ceramic 1.0 f 0.6 0.9 1.2 1.5 1.8 2.1 2.4 -40 0 40 80 120 160 200 240 280 320 360 time t( s) output voltage vout(v) 0 50 100 150 o utput current iout(ma) output current io ut=50ma ? 100ma output voltage vin=3.5v cin=ceramic 0.1 f ? cout=ceramic 1.0 f vin=4.3v cin=ceramic 0.1 f ? cout=ceramic 1.0 f 1.9 2.2 2.5 2.8 3.1 3.4 3.7 -40 0 40 80 120 160 200 240 280 320 360 time t( s) output voltage vout(v) 0 50 100 150 output current iout(ma) output current iout=50ma ? 100ma output voltage 2.7 3 3.3 3.6 3.9 4.2 4.5 -40 0 40 80 120 160 200 240 280 320 360 time t( s) output voltage vout(v) 0 50 100 150 o utput current iout(ma) output current io ut=50ma ? 100ma output voltage
rp104 27 rp 104x 331x rp104x121x rp104x251x vin=2.2v cin = ceramic 0 1 f ? f vin=3.5v cin = ceram ic 0 1 f ? f vin=4.3v cin = ceramic 0 1 f ? f 2.9 3.1 3.3 3.5 3.7 3.9 4.1 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 time t( ms) output voltage vout(v) -35 -26 -17 -8 1 10 19 output curre nt iout( ma) output current iout=1ma ? 10ma output voltage 2.1 2.3 2.5 2.7 2.9 3.1 3.3 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ti me t( ms ) output voltage vout(v) -35 -26 -17 -8 1 10 19 output current iout(ma) output current iout=1ma ? 10ma output v oltage 0.8 1 1.2 1.4 1.6 1.8 2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 time t( ms) o utpu t vo lt age vout(v ) -35 -26 -17 -8 1 10 19 output current iout(ma) output current iout=1ma ? 10ma output voltage
rp104 28 14. input transient response (topt=25 c) rp 104x 331x rp104x121x rp104x251x 0.2 0.7 1.2 1.7 2.2 2.7 3.2 3.7 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 time t(ms) output voltage vout(v) -2.8 -1.8 -0.8 0.2 1.2 2.2 3.2 4.2 input voltage vin(v) iout=30ma cin=none ? cout=ceramic 0.1 f input voltag e output voltage iout=30m a ci n=none ? cout=ceramic 0.1 f 1.5 2 2.5 3 3.5 4 4.5 5 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 time t(ms) output voltage vout(v) -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 input voltage vin(v) input voltag e output voltage 2.3 2.8 3.3 3.8 4.3 4.8 5.3 5.8 -0. 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 time t(ms) output voltage vout(v) -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 input voltage vin(v) iout=30ma cin=none ? cout=ceramic 0.1 f input voltag e output voltage
rp104 29 rp104x331x rp104x121x rp104x251x 0.2 0.7 1.2 1.7 2.2 2.7 3.2 3.7 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 time t(ms) output voltage vout(v) -2.8 -1.8 -0.8 0.2 1.2 2.2 3.2 4.2 input voltage vin(v) iout=30ma cin= none ? cout=ceramic 0.1 f input voltag e output voltage iout=30ma cin=none ? cout=ceramic 0.1 f 1.5 2 2.5 3 3.5 4 4.5 5 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 time t(ms) output voltage vout(v) -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 input voltage vin(v) input voltag e output voltage 2.3 2.8 3.3 3.8 4.3 4.8 5.3 5.8 -0. 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 tim e t(ms) output voltage vout(v) -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 input voltage vin(v) iout=30ma cin= none ? cout=ceramic 0.1 f input voltag e output voltage
rp104 30 rp104x331x rp104x121x rp104x251x 0.2 0.7 1.2 1.7 2.2 2.7 3.2 3.7 -0.1 0 0.10.20.30.40.50.60.70.80.9 time t(ms) output voltage vout(v) 0.2 1.2 2.2 3.2 4.2 input voltage vin(v) iout=30ma cin= none ? cout=ceramic 1.0 f input voltag e output voltage iout=30ma cin=none ? cout=ceramic 1.0 f 1.5 2 2.5 3 3.5 4 4.5 5 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 time t(ms) output voltage vout(v) 0.5 1.5 2.5 3.5 4.5 5.5 input voltage vin(v) input voltage output voltage 2.3 2.8 3.3 3.8 4.3 4.8 5.3 5.8 -0.1 0 0.10.20.30.40.50.60.70.80.9 time t(ms) output voltage vout(v) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 input voltage vin(v) iout=30ma cin= none ? cout=ceramic 1.0 f input voltag e output voltage
rp104 31 rp104x331x rp104x121x rp104x251x vin= 1 .7v 5v cin=ceramic 0.047 f ? cout=ceramic 0.047 vin=2.6v 5v cin=ceramic 0.047 f ? cout=ceramic 0.047 f vin=3.4v 5v cin=ceramic 0.047 f ? cout=ceramic 0.047 f 0.01 0.1 1 10 100 1000 0 30 60 90 120 150 out p ut current iout ( ma ) esr ( ? ) 0.01 0.1 1 10 100 1000 0 30 60 90 120 150 out p ut current iout ( ma ) esr ( ? ) 0.01 0.1 1 10 100 1000 0 30 60 90 120 150 out p ut current iout ( ma ) esr ( ? )
rp104 32 0 100 200 300 400 500 600 0 25 50 75 100 125 150 ambience temperature (c) power dissipation pd (mw) 250 420 525 85 free air on board power dissipation (sot-23-5) this specification is at mounted on board. power dissipation (p d ) depends on conditions of mounting on board. this specification is based on the measurement at the condition below: (power dissipation (sot-23-5) is substitution of sot-23-6.) measurement conditions standard test land pattern environment mounting on board (wind velocity=0m/s) board material glass cloth epoxy plastic (double sided) board dimensions 40mm*40mm*1.6mm copper ratio top side: approx. 50%, back side: approx. 50% through-holes 0.5mm * 44pcs measurement result (ta=25 c) standard test land pattern free air power dissipation 420mw(tjmax=125 c) 525mw(tjmax=150 c) 250mw(tjmax=125 c) thermal resistance ja = (125-25 c)/0.42w= 263 c/w 400 c/w power dissipation measurement board pattern ic mount area (unit: mm) - use in the oblique-line-area might be influence the product-life cycle because of exceeding the absolutely maximum ratings 125c of "storage temperature range". please suppress by 9,000 hours about use. 9,000 hours will correspond in six years when using it for four hours a day
rp104 33 0 100 200 300 400 500 600 0 25 50 75 100 125 150 a mbience tem p erature ( c ) power dissi p ation ? p d ( mw ) 85 400 500 power dissipation (plp1010-4) this specification is at mounted on board. power dissipation (p d ) depends on conditions of mounting on board. this specification is based on the measurement at the condition below: measurement conditions standard test land pattern environment mounting on board (wind velocity=0m/s) board material glass cloth epoxy plastic (double sided) board dimensions 40mm * 40mm * 1.6mm copper ratio top side: approx. 50%, back side: approx. 50% through-holes 0.54mm * 24pcs measurement result (ta=25 c) standard test land pattern power dissipation 400mw(tjmax=125 c) 500mw(tjmax=150 c) thermal resistance ja = (125-25 c)/0.4w= 250 c/w jc = 67 c/w power dissipation power dissipation power dissipation power dissipation measurent board pattern measurent board pattern measurent board pattern measurent board pattern ic mount area (unit:mm) -use in the oblique-line-area might be influence the product-life cycle because of exceeding the absolutely maximum ratings 125c of "storage temperature range". please suppress by 13,000 hours about use. 13,000 hours will correspond in nine years when using it for four hours a day 40 40
rp104 34 60 0 500 40 0 300 20 power dissipation (sc-82ab) this specification is at mounted on board. power dissipation (p d ) depends on conditions of mounting on board. this specification is based on the measurement at the condition below; measurement conditions standard land pattern environment mounting on board (wind velocity=0m/s) board material glass cloth epoxy plastic (double layers) board dimensions 40mm 40mm 1.6mm copper ratio top side: approx. 50%, back side: approx. 50% through-hole 0.5mm 44pcs measurement result (ta=25 c, tjmax=125 c) standard land pattern free air power dissipation 380mw 150mw thermal resistance ja 1 (125-25 c)/0.38w 1 263 c/w 667 c/w power dissipation measurment board pattern ic mount area (unit : mm) on board 0 25 50 75 85 100 125 150 ambience temperature ( c) power dissipation p d (mw) free air 40 40 380 150


▲Up To Search▲   

 
Price & Availability of RP104N33C-TR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X